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Abstract: A novel inexact smoothing method is presented for solving the second-order cone complementarity
problems (SOCCP). Our method reformulates the SOCCP as an equivalent nonlinear system of equations by in-
troducing a regularized Chen-Harker-Kanzow-Smale smoothing function. At each iteration, Newton’s method
is adopted to solve the system of equations approximately, which saves computation work compared to the cal-
culations of exact search directions. Under rather weak assumptions, the algorithm is proved to possess global
convergence and local quadratic convergence.
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1 Introduction
In this paper, we consider the following second-order
cone complementarity problem (SOCCP) (see, e.g.,
[1]), which is to find vectors (x, s, p) ∈ Rn×Rn×Rl

such that

x ∈ K, s ∈ K, < x, s >= 0, F (x, s, p) = 0, (1)

where < ·, · > represents the Euclidean inner prod-
uct, F : Rn × Rn × Rl → Rn+l is a continuously
differentiable function, and

K = Kn1 ×Kn2 × · · · ×Knm

with
n = n1 + n2 + · · ·+ nm

is the Cartesian product of second-order cones. The
set Kni(i = 1, . . . ,m) is the second-order cone
(SOC) of dimension ni defined by

Kni =

{
xi = (xi0, xi1) ∈ R×Rni−1 :
xi0 − ∥xi1∥ ≥ 0

}
,

where ∥ · ∥ refers to the Euclidean norm. Then the
interior of the SOC is

intKni =

{
xi = (xi0, xi1) ∈ R×Rni−1 :
xi0 − ∥xi1∥ > 0

}
,

and therefore

intK = intKn1 × intKn2 × · · · × intKnm .

It is easy to verify that the SOC K is self-dual, i.e.,

K = K∗ := {s ∈ Rn : sTx ≥ 0, ∀x ∈ K}.

It should be noted that the SOCCP (1) considered in
this paper is one of the most general expressions of
the SOCCP. Actually, if l = 0 and

F (x, s, p) = f(x)− s

for some f : Rn → Rn, then (1) becomes

x ∈ K, s ∈ K, < x, s >= 0, s = f(x),

which is the form considered by many researchers
(see, e.g., [2, 3, 4]), and if l = n and

F (x, s, p) =

(
f(p)− x
g(p)− s

)

for some f : Rn → Rn and g : Rn → Rn, then (1)
reduces to

x ∈ K, s ∈ K, < x, s >= 0,

x = f(p), s = g(p),

which was studied by Chen and Tseng [5].
The SOCCPs have various important applications

in many fields, such as management, control, and en-
gineering (see, e.g., [6]). The SOCCPs have been uti-
lized as a general framework for the linear comple-
mentarity problems, the nonlinear complementarity

WSEAS TRANSACTIONS on MATHEMATICS Xiaoni Chi, Zhongping Wan, Jiawei Chen

E-ISSN: 2224-2880 1114 Issue 11, Volume 12, November 2013



problems, the second-order cone programming prob-
lems and so on (see, e.g., [7]).

Recently great attention has been paid to smooth-
ing methods (non–interior continuation methods) for
solving the linear complementarity problems (see,
e.g., [8]), the nonlinear complementarity problems
and variational inequality problems (see, e.g., [9, 10]),
partially due to their superior numerical performances
and theoretical results. Unlike interior point methods,
smoothing Newton methods do not require starting
points and intermediate iteration points to stay in the
sets of strict feasible solutions.

However, to obtain the global convergence and lo-
cal superlinear (or quadratic) convergence, some al-
gorithms available (see, e.g., [9]) strongly depend on
uniform nonsingularity assumptions. Without uni-
form nonsingularity, most smoothing Newton meth-
ods (see, e.g., [8, 11]) need to solve two linear systems
of equations and to perform two or three line searches
at each iteration.

Moreover, most computation work in smoothing
Newton methods is devoted to the computation of an
exact search direction by solving a system of equa-
tions, especially when the problem is large. Even if
a direct method is used to solve the system of equa-
tions, the solution may not satisfy the equations ex-
actly due to rounding errors. These motivate the study
of smoothing methods that use inexact search direc-
tions.

In [12], a smoothing inexact Newton method is
proposed for the P0 nonlinear complementarity prob-
lem, which is shown to possess global convergence
and local superlinear convergence.

Motivated by the method in [12], we propose a
novel inexact smoothing method to solve the SOCCP
in this paper. At each iteration, our method allows the
use of the search directions that are calculated from
the system of equations with only moderate accuracy.
Moreover, our method is shown to possess global con-
vergence and local quadratic convergence under rather
weak conditions.

The organization of this paper is as follows. In
Section 2, we review some preliminaries, including
the Euclidean Jordan algebra, semismoothness and
the Cartesian mixed P0−property, which will be used
in the subsequent analysis. In Section 3, our inex-
act smoothing method is proposed for solving the
SOCCP. Convergence of the method is analyzed in
Section 4. Section 5 concludes this paper.

2 Some Preliminaries
In this section, we give a brief introduction to the Eu-
clidean Jordan algebra (see, e.g., [7, 13]) associated

with the SOC Kn, and the concepts of semismooth-
ness and the Cartesian mixed P0−property, which will
be used in the subsequent analysis.

For any x = (x0, x1) and s = (s0, s1) ∈ R ×
Rn−1, the Jordan product is defined as

x ◦ s = (xT s, x0s1 + s0x1).

We will write x2 to mean x ◦ x and x + s to mean
the usual componentwise addition of vectors x and s.
Then, ◦, +, together with

e := (1, 0, · · · , 0) ∈ Rn

have the following basic properties (see, e.g., [13]).

Property 1 ([13])

(i) e ◦ x = x ∀x ∈ Rn.
(ii) x ◦ s = s ◦ x ∀x, s ∈ Rn.
(iii) x ◦ (x2 ◦ s) = x2 ◦ (x ◦ s) ∀x, s ∈ Rn.
(iv) (x+ y) ◦ s = x ◦ s+ y ◦ s ∀x, s, y ∈ Rn.

Notice that the Jordan product ”◦”, unlike scalar
or matrix multiplication, is not associative in general,
which is the main source on complication in the anal-
ysis of SOCCPs.

For any x = (x0, x1) ∈ R×Rn−1, we define the
symmetric matrix

Lx =

(
x0 xT1
x1 x0I

)
,

which can be viewed as a linear mapping with the fol-
lowing properties.

Property 2 ([13])

(i) Lxs = x ◦ s and Lx+s = Lx + Ls for any x, s ∈
Rn.
(ii) x ∈ Kn ⇔ Lx is positive semidefinite, and x ∈
intKn ⇔ Lx is positive definite.
(iii) Lx is invertible whenever x ∈ intKn with the
inverse L−1

x given by

L−1
x =

1

det(x)

(
x0 −xT1

−x1
det(x)
x0

I +
x1xT

1
x0

)
,

where det(x) := x20 − ∥x1∥2 denotes the determinant
of x.

We now introduce the spectral factorization of
vectors in Rn associated with the SOC Kn, which
is an important character of Jordan algebra. For any
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x = (x0, x1) ∈ R×Rn−1, its spectral factorization is
defined as

x = λ1u
(1) + λ2u

(2).

Here λ1, λ2 are the spectral values given by

λi = x0 + (−1)i∥x1∥, i = 1, 2,

and u(1), u(2) are the associated spectral vectors given
by

u(i) =

{
1
2(1, (−1)i x1

∥x1∥) if x1 ̸= 0,
1
2(1, (−1)iω) otherwise,

i = 1, 2,

with ω ∈ Rn−1 being any vector satisfying ∥ω∥ = 1.
If x1 ̸= 0, the factorization is unique.

Some interesting properties of λ1, λ2 and
u(1), u(2) are given as follows. Notice that the iden-
tity element e is uniquely identified by its two spectral
values which are exactly equal to 1.

Property 3 ([13])
For any x = (x0, x1) ∈ R × Rn−1, the spectral

values λ1, λ2 and spectral vectors u(1), u(2) have the
following properties:
(i) u(1) and u(2) are orthogonal under the Jordan
product and have length 1/

√
2, i.e.,

u(1) ◦ u(2) = 0, ∥u(1)∥ = ∥u(2)∥ = 1/
√
2.

(ii) u(1) and u(2) are idempotent under the Jordan
product, i.e.,

u(i) ◦ u(i) = u(i), i = 1, 2.

(iii) λ1 and λ2 are nonnegative (respectively, positive)
if and only if x ∈ Kn (respectively, x ∈ intKn).
(iv) The determinant, the trace, and the Euclidean
norm of x can be represented in terms of λ1 and λ2:

det(x) := λ1λ2,

tr(x) := λ1 + λ2,

2∥x∥2 = λ2
1 + λ2

2.

By using the spectral factorization, we may ex-
tend scalar functions to SOC functions. For example,
we define

x2 = λ2
1u

(1) + λ2
2u

(2), ∀x ∈ Rn.

Since both λ1 and λ2 are nonnegative for any x ∈ Kn,
we define

√
x =

√
λ1u

(1) +
√
λ2u

(2), ∀x ∈ Kn.

Semismoothness is a generalization of the
smoothness, which was originally introduced by Mif-
flin [14] for functionals and extended to vector-valued
functions by Qi and Sun [15].

Definition 4 ([15]) Suppose that G : Rm → Rn is
locally Lipschitz continuous around x ∈ Rm.

(i) G is said to be semismooth at x if G is direc-
tionally differentiable at x and for any V ∈ ∂G(x +
△x),

G(x+△x)−G(x)− V (△x) = o(∥△x∥),

where ∂G stands for the generalized Jacobian of G in
the sense of Clarke [16].

(ii) G is said to be p-order (0 < p < ∞)
semismooth at x if G is semismooth at x and

G(x+△x)−G(x)− V (△x) = O(∥△x∥1+p).

In particular, G is said to be strongly semismooth
at x if G is said to be 1-order semismooth at x.

A function G : Rm → Rn is said to be a semis-
mooth (respectively, p-order semismooth) function if
it is semismooth (respectively, p-order semismooth)
everywhere in Rm. Semismooth functions include
smooth functions, piecewise smooth functions, and
convex and concave functions. The composition of
(strongly) semismooth functions is still a (strongly)
semismooth function [14].

Now let us introduce the concept of the Cartesian
mixed P0−property.

Definition 5 ([1]) Define the matrix Q = [A B C]

where A,B ∈ R(n+l)×n and C ∈ R(n+l)×l.
The matrix Q is said to have the Cartesian mixed
P0−property iff C has full column rank and

Au+Bv + Cw = 0, (u, v) ̸= 0, w ∈ Rl,
u = (u1, · · · , um) ∈ Rn1 × · · · ×Rnm ,
v = (v1, · · · , vm) ∈ Rn1 × · · · ×Rnm

⇒

there exists an index i such that (ui, vi) ̸= 0 and
⟨ui, vi⟩ ≥ 0.

Clearly, when m = n and n1 = · · · = nm = 1,
the matrix Q having the Cartesian mixed P0−property
coincides with Q having the mixed P0−property [17].
Therefore, F ′(x, s, p) having the Cartesian mixed
P0−property, which will be adopted in this paper, is a
weaker assumption than the monotonicity assumption
usually used in SOCCPs (see, e.g., [4]).

3 Inexact Smoothing Method
In this section, a novel inexact smoothing method is
proposed for the SOCCP and is shown to be well de-
fined. Our method reformulates (1) as an equivalent
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nonlinear system of equations, and then applies New-
ton’s method to solving the system of equations ap-
proximately.

We firstly recall the following smoothing function
ϕ : R×Rn ×Rn → Rn defined by [18]:

ϕ(µ, x, s) = (1 + µ)(x+ s)

−
√
(1− µ)2(x− s)2 + µ2e,

(2)

which is a regularized version of Chen-Harker-
Kanzow-Smale smoothing function [2]. Notice that

ϕ(0, x, s) = 0 ⇔ x ∈ K, s ∈ K. (3)

Let z := (µ, x, s, p) ∈ R×Rn ×Rn ×Rl. Based on
the regularized Chen-Harker-Kanzow-Smale smooth-
ing function (2), we define

G(z) =

(
eµ − 1
Φ (z)

)
, (4)

Φ (z) =

(
ϕ (µ, x, s)
F (x, s, p)

)
, (5)

and
Ψ(z) = ∥G(z)∥2.

By (1), (2), (3), (4) and (5), z∗ := (0, x∗, s∗, p∗) is a
root of the system of equations G(z) = 0 if and only
if (x∗, s∗, p∗) is the optimal solution of the SOCCP
(1).

By Theorem 3.2 in [19], we obtain the following
properties of G(z).

Lemma 6 Let G : R+ × R2n+l → R+ × R2n+l be
defined in (5). Then the following results hold.

(i) G is locally Lipschitz continuous and semis-
mooth everywhere in R1+2n+l. Moreover, if F ′ is lo-
cally Lipschitzian, then G is strongly semismooth on
R1+2n+l.

(ii) G is continuously differentiable at any point
z := (µ, x, s, p) ∈ R++ × R2n+l with the Jacobian
matrix

G′(z)

=

 eµ 0 0 0

ϕ
′
µ(z) ϕ

′
x(z) ϕ

′
s(z) 0

0 F
′
x(x, s, p) F

′
s(x, s, p) F

′
p(x, s, p)

 ,

where

ϕ
′
µ(z) = x+ s− L−1

w [−(1− µ)v2 + 4µe],

ϕ
′
x(z) = (1 + µ)I − (1− µ)2L−1

w Lv,

ϕ
′
s(z) = (1 + µ)I + (1− µ)2L−1

w Lv,

v := x− s, w :=
√
(1− µ)2v2 + 4µ2e.

(iii) If F ′(x, s, p) has the Cartesian mixed
P0−property at z := (µ, x, s, p) ∈ R++ × R2n+l,
i.e., F ′(x, s, p) satisfies

rankF
′
p(x, s, p) = l, (6)

and

F ′(x, s, p)(ξ, η, φ) = 0, (ξ, η) ̸= 0, φ ∈ Rl,
ξ = (ξ1, · · · , ξm) ∈ Rn1 × · · · ×Rnm ,
η = (η1, · · · , ηm) ∈ Rn1 × · · · ×Rnm

⇒

there exists an index i such that (ξi, ηi) ̸= 0 and

⟨ξi, ηi⟩ ≥ 0, (7)

then the matrix G′(z) is nonsingular.

Proof. It follows from Theorem 3.2 in [19], Lemma
3.1 in [18] and Definition 4 that (i) and (ii) hold. Now
we prove (iii). Let z := (µ, x, s, p) ∈ R++ × R2n+l

be any point satisfying (6) and (7). It is easy to see
that the nonsingularity of F ′(x, s, p) is equivalent to
the nonsingularity of the following matrix

J(z)

=

(
ϕ

′
x(z) ϕ

′
s(z) 0

F
′
x(x, s, p) F

′
s(x, s, p) F

′
p(x, s, p)

)
.

(8)

Now let us show that the matrix J(z) is nonsingular.
Suppose that

J(z)(ξ, η, φ) = 0.

It suffices to prove (ξ, η, φ) = 0. From (8), we have

[(1 + µ)I − (1− µ)2L−1
w Lv]ξ + [(1 + µ)I+

(1− µ)2L−1
w Lv]η = 0,

(9)

and

F ′(x, s, p)(ξ, η, φ) = 0, (10)

where

ξ = (ξ1, · · · , ξm) ∈ Rn1 × · · · ×Rnm ,

η = (η1, · · · , ηm) ∈ Rn1 × · · · ×Rnm .

Multiplying both sides of (9) by Lw from the left
yields

[(1 + µ)Lw − (1− µ)2Lv]ξ + [(1 + µ)Lw+
(1− µ)2Lv]η = 0.
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Thus, we have for i = 1, 2, . . . ,m that

[(1 + µ)Lwi − (1− µ)2Lvi ]ξi + [(1 + µ)Lwi+
(1− µ)2Lvi ]ηi = 0,

(11)

with

v = (v1, · · · , vm) ∈ Rn1 × · · · ×Rnm ,

w = (w1, · · · , wm) ∈ Rn1 × · · · ×Rnm .

Let
Li := (1 + µ)Lwi − (1− µ)2Lvi ,

Li := (1 + µ)Lwi + (1− µ)2Lvi ,

for i = 1, 2, · · · ,m. Since

[(1 + µ)wi]
2 − [(1− µ)2(±vi)]

2

= 4µ(1− µ)2v2i + 4µ2(1 + µ)2ei
∈ intKni ,

(12)

Lemma 3.5 in [2] shows that both Li and Li are non-
singular. It follows from (12) and Proposition 3.4 in
[2] that the symmetric part of LiLi is positive definite.
Multiplying both sides of (11) by ξTi L

−1
i from the left

yields

ξTi L
−1
i Liξi + ⟨ξi, ηi⟩ = 0, i = 1, 2, ...,m,

or equivalently

ξ
T
i LiLiξi + ⟨ξi, ηi⟩ = 0, i = 1, 2, ...,m, (13)

with ξi := L−1
i ξi. Now let us assume (ξ, η) ̸= 0.

Then by (10) and assumption (7), there exists an index
i such that (ξi, ηi) ̸= 0 and ⟨ξi, ηi⟩ ≥ 0. But since the
symmetric part of LiLi is positive definite, relation
(13) implies

ξ
T
i LiLiξi = 0

and therefore ξi = 0. Then ξi = 0 and since Li is
nonsingular, relation (11) implies ηi = 0. This con-
tradicts (ξi, ηi) ̸= 0. Thus we must have (ξ, η) = 0.

Since by assumption (6) the matrix F
′
p(x, s, p) has full

column rank l, relation (10) implies φ = 0. Therefore,
the matrix J(z) is nonsingular. ⊓⊔

By Lemma 6 , G(z) is continuously differentiable
at any point z := (µ, x, s, p) ∈ R++ × R2n+l. Thus,
for any µ > 0, we can apply Newton’s method to solv-
ing the smooth system of equations G(z) = 0 approx-
imately at each iteration, and make Ψ(z) ↓ 0 so that
the solutions of the SOCCP (1) can be found.

Let γ ∈ (0, 1) and µ0 > 0. Define the function
β : R+ ×R2n+l → R+ by

β(z) := eµγmin{1,Ψ(z)}. (14)

Algorithm 7 (A novel inexact smoothing method)

Step 0 Choose constants δ, σ ∈ (0, 1), and µ0 > 0.
Let z̄ := (µ0, 0, 0, 0) ∈ R++ × Rn × Rn × Rl, and
z0 := (µ0, x0, s0, p0) ∈ R++×R2n+l be an arbitrary
point. Choose γ ∈ (0, 1) such that γµ0 < 1/4, and
choose a sequence {ηk} such that ηk ∈ [0, θ), where
θ ∈ [0, (1− 4γµ0)/2]. Set k := 0.

Step 1 If Ψ(zk) = 0, stop.

Step 2 Compute a solution ∆zk = (∆µk,∆xk,
∆sk,∆pk) ∈ R×R2n+l of the linear system of equa-
tions

G(zk) +G′(zk)∆zk = βkz̄ + rk, (15)

where the residual rk =

(
0
rk1

)
∈ R × R2n+l sat-

isfies ∥rk∥ ≤ ηk min{1,Ψ(zk)}.
Step 3 Let λk = max{δl| = 0, 1, 2, . . .} such that

Ψ(zk + λk∆zk)
≤ [1− σ(1− 4γµ0 − 2ηk)λk]Ψ(zk).

(16)

Step 4 Set zk+1 = zk + λk∆zk, and k := k + 1. Go
to Step 1.

By Lemma 6, we could show the well-
definedness of Algorithm 7.

Theorem 8 Suppose that F ′(x, s, p) has the Carte-
sian mixed P0−property at any point z :=
(µ, x, s, p) ∈ R++ × R2n+l. Then for any k ≥ 0,
Algorithm 7 is well-defined and generates an infinite
sequence {zk := (µk, xk, sk, pk)}. Moreover, we have
µk ∈ R++ and zk ∈ Ω for any k ≥ 0, where

Ω =

{
z = (µ, x, s, p) ∈ R++ ×R2n+l :
µ ≥ γmin{1,Ψ(z)}µ0

}
. (17)

Proof. We divide the proof into four steps.
(i) It is obvious that µ0 > 0. Suppose that µk >

0. Thus by (15), we get

∆µk =
1− eµk

eµk
+

βkµ0

eµk
.

Then for any α ∈ (0, 1], we obtain

µk+1 = µk + α∆µk

= µk + α
(
1−eµk
eµk + βkµ0

eµk

)
≥ µk + α (−µk + γmin{1,Ψ(zk)}µ0)
= (1− α)µk + αγµ0min{1,Ψ(zk)}
> 0.
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By mathematical induction on k, we have that µk > 0
for any k ≥ 0.

(ii) It follows from Lemma 6 that the ma-
trix G′(zk) is nonsingular for any µk > 0, since
F ′(x, s, p) has the Cartesian mixed P0−property at
any point z := (µ, x, s, p) ∈ R++ × R2n+l. There-
fore, Step 2 is well-defined.

(iii) By the Taylor expansion and (15), we have

eµk+α∆µk − 1
= eµk

[
1 + α∆µk +O(α2)

]
− 1

= eµk − 1 + αeµk∆µk +O(α2)
= eµk − 1 + α (1− eµk + βkµ0) +O(α2)
= (1− α)(eµk − 1) + αβkµ0 +O(α2).

(18)

Since eµk − 1 ≤ ∥G(zk)∥ and

(∥G(zk)∥+ 1)min{1,Ψ(zk)}
= (∥G(zk)∥+ 1)min{1, ∥G(zk)∥2}
≤ 2∥G(zk)∥,

we obtain from (18) that

(eµk+α∆µk − 1)2

= [(1− α)(eµk − 1) + αβkµ0 +O(α2)]2

= (1− α)2(eµk − 1)2 + α2β2
kµ

2
0

+2α(1− α)βkµ0(e
µk − 1) +O(α2)

≤ (1− α)(eµk − 1)2 + 2αβkµ0(e
µk − 1)

+O(α2)
= (1− α)(eµk − 1)2 +O(α2)

+2αγµ0e
µk(eµk − 1)min{1,Ψ(zk)}

≤ (1− α)(eµk − 1)2 + 2αγµ0(∥G(zk)∥+ 1)
·∥G(zk)∥ ·min {1,Ψ(zk)}+O(α2)

≤ (1− α)(eµk − 1)2 + 4αγµ0∥G(zk)∥2
+O(α2)

= (1− α)(eµk − 1)2 + 4αγµ0Ψ(zk) + o(α).

(19)

From (15), we obtain

Φ(zk) + Φ′(zk)∆zk = rk1,

and therefore

∥Φ(zk + α∆zk)∥2
= ∥Φ(zk) + αΦ′(zk)∆zk +O(α2)∥2
= ∥(1− α)Φ(zk) + αrk1 +O(α2)∥2
≤ (1− α)2∥Φ(zk)∥2 + 2α(1− α)∥Φ(zk)∥

·∥rk1∥+O(α2)
≤ (1− α)∥Φ(zk)∥2 + 2αηk min {1,Ψ(zk)}

·∥Φ(zk)∥+ o(α)
≤ (1− α)∥Φ(zk)∥2 + 2αηk min

{
1, ∥G(zk)∥2

}
·∥G(zk)∥+ o(α)

≤ (1− α)∥Φ(zk)∥2 + 2αηk∥G(zk)∥2 + o(α)
= (1− α)∥Φ(zk)∥2 + 2αηkΨ(zk) + o(α).

(20)

Hence, we have from (19) and (20) that

∥G(zk + α∆zk)∥2

=
(
eµk+α∆µk − 1

)2
+ ∥Φ(zk + α∆zk)∥2

≤ (1− α) (eµk − 1)2 + (1− α) ∥Φ(zk)∥2
+4αγµ0Ψ(zk) + 2αηkΨ(zk) + o(α)

= [1− (1− 4γµ0 − 2ηk)α]Ψ(zk) + o(α).

Then, there exists α ∈ (0, 1] such that for all α ∈
(0, α] and σ ∈ (0, 1),

Ψ(zk + α∆zk) ≤ [1− σ(1− 4γµ0 − 2ηk)α]Ψ(zk),

which implies that there exists some λk such that (16)
holds. Therefore, Step 3 is well-defined.

(iv) By Theorem 8(i), we have µk ∈ R++ for
any k ≥ 0. Now, we prove

µk ≥ γmin{1,Ψ(zk)}µ0

for any k ≥ 0 by mathematical induction on k. It is
obvious that

µ0 ≥ γmin{1,Ψ(z0)}µ0,

since
γmin{1,Ψ(z)} ≤ γ < 1.

Suppose that zk ∈ Ω. Then it follows from (15) and
(17) that

µk+1 = µk + λk∆µk

= µk + λk

(
1−eµk
eµk + βkµ0

eµk

)
≥ µk + λk (−µk + γmin{1,Ψ(zk)}µ0)
= (1− λk)µk + λkγµ0min{1,Ψ(zk)}
≥ γmin{1,Ψ(zk)}µ0

≥ γmin{1,Ψ(zk+1)}µ0,

where the last inequality is due to the fact that
{Ψ(zk)} is monotonically decreasing. By induction
on k, we have that zk ∈ Ω for any k ≥ 0. This com-
pletes the proof. ⊓⊔

4 Convergence Analysis
According to Theorem 8, Algorithm 7 generates an in-
finite sequence {zk} := {(µk, xk, sk, pk)} under suit-
able assumptions. Let z∗ := (µ∗, x∗, s∗, p∗) be an ac-
cumulation point of the iteration sequence {zk} gen-
erated by the novel inexact smoothing method. In this
section, we establish the global convergence and local
quadratic convergence of Algorithm 7.

For any µ > 0 and c > 0, let

Lµ(c) =
{
(x, s) ∈ R2n : ∥Φ(z)∥ ≤ c

}
,
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and for any 0 < µ ≤ µ and c > 0, let

L(c) =
∪

µ≤µ≤µ

Lµ(c).

Lemma 9 Suppose that F ′(x, s, p) has the Cartesian
mixed P0−property at any point z := (µ, x, s, p) ∈
R++ × R2n+l, and for any µ > 0, 0 < µ ≤ µ and
c > 0, the set

L(c) =
∪

µ≤µ≤µ

Lµ(c)

is bounded. Then the sequence {Ψ(zk)} generated by
Algorithm 7 is convergent. If it does not converge to
zero, the sequence {zk} is bounded.

Proof. Since F ′(x, s, p) has the Cartesian mixed
P0−property at any point z := (µ, x, s, p) ∈ R++ ×
R2n+l, it follows from Theorem 8 that Algorithm 7 is
well-defined.

From (16), the sequence {Ψ(zk)} is monotoni-
cally decreasing. Then {Ψ(zk)} is convergent, i.e.,
there exists Ψ∗ ≥ 0 such that Ψ(zk) → Ψ∗ as
k → ∞. If {Ψ(zk)} does not converge to zero, then
Ψ∗ > 0. By (4) and (16), we have

µk ≤ eµk − 1 ≤
√
Ψ(zk) ≤

√
Ψ(z0),

and thus {µk} is bounded. Then there exist µ, µ > 0
such that

0 < µ ≤ µk ≤ µ

for all k ≥ 0. Let c0 :=
√
Ψ(z0) and

L(c0) =
∪

µ≤µk≤µ

Lµk
(c0).

It is not difficult to see that (xk, sk, pk) ∈ L(c0), be-
cause of (xk, sk, pk) ∈ Lµk

(c0). It follows from the
assumption that the set L(c0) is bounded and there-
fore {(xk, sk, pk)} is bounded. Hence, the sequence
{zk} := {(µk, xk, sk, pk)} is bounded. ⊓⊔

To discuss the convergence property of Algorithm
7, we make the following assumptions.

Assumption 10 F ′(x, s, p) has the Cartesian mixed
P0−property in the sense that F ′(x, s, p) satisfies (6)
and (7) at any point z := (µ, x, s, p) ∈ R++×R2n+l.

Assumption 11 For any µ > 0, 0 < µ ≤ µ and
c > 0, the set

L(c) =
∪

µ≤µ≤µ

Lµ(c)

is bounded.

Remark 12 (i) From Theorem 8(ii), if Assumption
10 holds, the matrix G′(z) is nonsingular for any
z := (µ, x, s, p) ∈ R++×R2n+l. Obviously Assump-
tion 10 is a weaker assumption than the monotonicity
assumption usually used in SOCCPs.

(ii) From Lemma 9, if Assumption 11 holds, the
sequence {zk} := {(µk, xk, sk, pk)} generated by Al-
gorithm 7 is bounded.

The following Lemma shows that if l = 0 and
F (x, s, p) := f(x)− s where f is a continuously dif-
ferentiable monotone function, then Assumption 10
and Assumption 11 hold, and therefore the sequence
{zk} := {(µk, xk, sk, pk)} generated by Algorithm 7
is bounded.

Lemma 13 Suppose that l = 0 and F (x, s, p) :=
f(x) − s where f is a continuously differentiable
monotone function. Then for any µ > 0, 0 < µ ≤ µ
and c > 0, the set

L(c) =
∪

µ≤µ≤µ

Lµ(c)

is bounded.

Proof. Since l = 0 and F (x, s, p) := f(x) − s
where f is a continuously differentiable monotone
function, it follows from Definition 5 that F ′(x, s, p)
has the Cartesian mixed P0−property at any point
z := (µ, x, s, p) ∈ R++ × R2n+l. Then from The-
orem 8, we obtain that Algorithm 7 is well-defined.

On the contrary, we assume that L(c) is un-
bounded. Then for some fixed c > 0, there ex-
ists a sequence {zk} := {(µk, xk, sk, pk)} such that
0 < µ ≤ µk ≤ µ, ∥Φ(zk)∥ ≤ c, but ∥(xk, sk)∥ → ∞.
By (5), we have

∥Φ(zk)∥2
= ∥f(xk)− sk∥2 + ∥ϕ(µk, xk, sk)∥2
≤ c.

Then from the proof of Lemma 5.3 in [18], we can
obtain

lim
∥(xk,sk)∥→∞

∥ϕ(µk, xk, sk)∥ = +∞,

which contradicts the boundedness of {ϕ(µk, xk,
sk)}. Therefore, we obtain the desired result. ⊓⊔

Under Assumption 10 and Assumption 11, we ob-
tain the global convergence of Algorithm 7.

Theorem 14 Suppose that Assumption 10 and As-
sumption 11 hold. Then any accumulation point of the
sequence {zk} generated by Algorithm 7 is a solution
of G(z) = 0.
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Proof. By Assumption 10 and Theorem 8, Algorithm
7 is well-defined and generates an infinite sequence
{zk} := {(µk, xk, sk, pk)}. From (16), we obtain
that the sequence {Ψ(zk)} is monotonically decreas-
ing, denoting its limit by Ψ∗. If Ψ∗ = 0, we obtain
the desired result. On the contrary, suppose Ψ∗ > 0.
Then it follows from Assumption 11 and Lemma 9
that the sequence {zk} is bounded. By taking a sub-
sequence if necessary, suppose that {zk} converges to
z∗ := (µ∗, x∗, s∗, p∗) as k → ∞. Then from the con-
tinuity of G(·) and the definition of β(·), we obtain
that

lim
k→∞

Ψ(zk) = Ψ(z∗) = ∥H(z∗)∥2,

lim
k→∞

βk = β∗ := eµ
∗
γmin{1,Ψ(z∗)}.

By Theorem 8, we get

0 < γmin{1,Ψ(z∗)}µ0 ≤ µ∗.

It follows from Lemma 6 that G(·) is continuously
differentiable at z∗ and thus G′(z∗) exists. By (16),
we have

lim
k→∞

λk = 0.

From Algorithm 7, we obtain that the steplength
λ̄k := λk/δ does not satisfy Step 3, i.e.,

Ψ(zk+λ̄k∆zk) >
[
1− σ(1− 4γµ0 − 2ηk)λ̄k

]
Ψ(zk),

which implies

[Ψ(zk + λ̄k∆zk)−Ψ(zk)]/λ̄k

> −σ(1− 4γµ0 − 2ηk)Ψ(zk).
(21)

On the other hand, we have by (14) for any k ≥ 0
that

βkµ0 = eµkγmin{1,Ψ(zk)}µ0

≤ |eµk − 1|γmin{1,Ψ(zk)}µ0

+γmin{1, ∥G(zk)∥2}µ0

≤ ∥G(zk)∥γµ0 + γµ0∥G(zk)∥
≤ 2γµ0∥G(zk)∥,

and therefore

β∗µ0 ≤ 2γµ0∥G(z∗)∥. (22)

From the definition of rk, we obtain for any k ≥ 0
that

∥rk∥ ≤ ηk min{1,Ψ(zk)}
≤ ηk∥G(zk)∥,

and therefore as k → ∞,

∥rk∥ ≤ ηk∥G(z∗)∥. (23)

Note that

lim
k→∞

[Ψ(zk + λ̄k∆zk)−Ψ(zk)]/λ̄k

= 2G(z∗)TG′(z∗)∆z∗.
(24)

Taking the limits on both sides of (21) and combining
(15), (22), (23) and (24) yield

−σ(1− 4γµ0 − 2ηk)Ψ(z∗)
≤ −2∥G(z∗)∥2 + 2∥G(z∗)∥β∗µ0 + ∥G(z∗)∥ · ∥rk∥
≤ (−2 + 4γµ0 + ηk)Ψ(z∗)
≤ (−1 + 4γµ0 + 2ηk)Ψ(z∗),

which implies

−σ(1− 4γµ0 − 2ηk) ≤ (−1 + 4γµ0 + 2ηk).

Since 1 − 4γµ0 − 2ηk > 0, we obtain σ ≥ 1, which
contradicts σ < 1. Thus we have Ψ(z∗) = 0. ⊓⊔

The following results show that our method is lo-
cally quadratically convergent without strict comple-
mentarity assumption.

Theorem 15 Suppose that Assumption 10 and As-
sumption 11 hold, and F ′ is locally Lipschitzian. As-
sume that all V ∈ ∂G(z∗) are nonsingular. Then the
sequence {zk} generated by Algorithm 7 converges to
z∗ quadratically, i.e.,

∥zk+1 − z∗∥ = O(∥zk − z∗∥2);

moreover,
µk+1 = O(µ2

k).

Proof. From Theorem 14, z∗ is a solution of G(z) =
0. Since V ∈ ∂G(z∗) are nonsingular, it follows from
Proposition 3.1 in [15] that for all zk sufficiently close
to z∗,

∥[G′(zk)]
−1∥ = O(1). (25)

It follows from Lemma 6 that G(·) is locally Lipschitz
continuous and strongly semismooth at z∗, since F ′ is
locally Lipschitzian. Then we have for all zk suffi-
ciently close to z∗,

∥G(zk)−G(z∗)∥ = O(∥zk − z∗∥), (26)

∥G(zk)−G(z∗)−G′(zk)(zk − z∗)∥
= O(∥zk − z∗∥2). (27)

Hence, by (14), (15), (25), (26) and (27), we have for
all zk sufficiently close to z∗ that

∥zk +∆zk − z∗∥
= ∥zk + [G′(zk)]

−1[−G(zk) + βkz
+rk]− z∗∥

≤ ∥[G′(zk)]
−1∥∥[G(zk)−G(z∗)

−G′(zk)(zk − z∗)∥+ βkµ0 + ∥rk∥]
= O(∥zk − z∗∥2).

(28)
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By the proof of Theorem 3.1 in [20], for all zk suffi-
ciently close to z∗, we have

∥zk − z∗∥ = O(∥G(zk)−G(z∗)∥). (29)

By Lemma 6(i), G(·) is locally Lipschitz continuous.
Hence, we have from (28) and (29) that

Ψ(zk) = ∥G(zk +∆zk)∥2
= O(∥zk +∆zk − z∗∥2)
= O(∥zk − z∗∥4)
= O(∥G(zk)−G(z∗)∥4)
= O(Ψ(zk)

2).

(30)

Then, it follows from (16) and (30) that for all zk suf-
ficiently close to z∗,

zk+1 = zk +∆zk, (31)

Therefore, we obtain from (28) and (31) that for all zk
sufficiently close to z∗,

∥zk+1 − z∗∥ = O(∥zk − z∗∥2). (32)

By (14), (15) and (32), we have for all zk sufficiently
close to z∗ that

µk+1 = µk +∆µk = βkµ0

= eµkγµ0∥G(zk)∥2.

Then from (26), (31) and (32), it follows that

µk+1 = O(∥G(zk)∥2)
= O(∥G(zk)−G(z∗)∥2)
= O(∥zk − z∗∥2)
= O(∥zk−1 − z∗∥4)
= O(∥G(zk−1)−G(z∗)∥4)
= O(µ2

k).

⊓⊔

5 Conclusion
In this paper, we reformulate the SOCCP (1) as an
equivalent system of equations by a regularized Chen-
Harker-Kanzow-Smale smoothing function. Then we
propose an inexact smoothing Newton method to
solve the system of equations. Our method is shown
to possess the following good properties.
◦ Our method does not have any restrictions regarding

its starting points;

◦ The method is well-defined, if F ′(x, s, p) has the
Cartesian mixed P0−property, which is a weaker as-
sumption than the monotonicity assumption usually
used in the SOCCP;

◦ At each iteration, Newton’s method is adopted to
solve the system approximately, which saves com-
putation work compared to the calculations of exact
search directions;

◦ The method is shown to possess global convergence
and local quadratic convergence without the strict
complementarity assumption.
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